

March 31, 2021

Fannin County Board of Commissioners Attn: Commission Chairman James V. Hensley, II 400 West Main Street Blue Ridge, GA 30513

RE: Hazardous Materials Survey

Former Whitepath Fab Tech Facility

118 Industrial Blvd.

Blue Ridge, Fannin County, Georgia Contour Project No: E21FAN:01

Dear Chairman Hensley,

Contour Engineering, LLC (Contour) has completed the authorized Hazardous Materials Survey for the above referenced property.

If you have any questions regarding this report or if we may be of further service to you, please contact the undersigned at (770) 794-0266.

Sincerely,

CONTOUR ENGINEERING, LLC

Kenneth Moore Senior Scientist Kevin W. McGowan Vice President

Enclosure: Hazardous Materials Survey

Hazardous Materials Survey Former Whitepath Fab Tech Facility 118 Industrial Blvd. Blue Ridge, Fannin County, Georgia

Contour Project No: E21FAN01

Prepared For:

Fannin County Board of Commissioners

400 West Main Street Blue Ridge, Georgia 30513

Prepared By:

CONTOUR ENGINEERING, LLC

1955 Vaughn Road Suite 101 Kennesaw, Georgia 30144

MARCH 31, 2021

Executive Summary

Contour Engineering, LLC (Contour) conducted a hazardous materials survey on the former Whitepath Fab Tech facility located at 118 Industrial Boulevard Blue Ridge, Georgia. The hazardous materials survey included an investigation for asbestos containing materials (ACM), lead based paint (LBP), and visual mold. The investigation was conducted for potential future renovation.

The purpose of this survey was to identify and sample suspect ACM, LBP, and mold and provide information regarding the identity, location, and condition on the structure.

The survey was conducted on March 17th, 2021, by a State of Georgia certified asbestos inspector in general accordance with the sampling protocols established in Environmental Protection Agency (EPA) 40 Code of Federal Regulations (CFR) 763.

ACM Investigation

The field portion of our work included a visual inspection and the collection of bulk samples from suspect ACM on the structures. The EPA and Occupational Safety and Health Administration (OSHA) define ACM as any material that contains greater than 1% asbestos. Eighty-nine (89) bulk asbestos samples were collected with 106 samples or layers tested from 55 homogeneous areas (HAs) of suspect ACM from the structures. **The following ACM were identified**:

- Vinyl Composition Floor Tile
- Floor Tile Mastic
- Remnant Flashing
- Roof Coating
- Remnant Parapet
- Remnant Roof
- Flashing

Contour recommends that the identified ACM be removed and disposed of by a Georgia Environmental Protection Agency (GA EPD)-licensed asbestos abatement contractor prior to the renovation activity that would disturb the ACM identified.

It should be noted that suspect materials, other than those identified during the March 2021 survey may exist within the structures. Should suspect materials other than those which were identified during this survey be uncovered prior to or during the renovation process, those materials should be assumed asbestos-containing until sampling and analysis can confirm or deny their asbestos content.

LBP Investigation

Housing and Urban Development (HUD) and the EPA define lead-based paint as a paint or other surface coating which contains lead equal to or greater than 0.5% by weight. Twenty-three (23) sample locations were submitted for laboratory analysis from the interior of the structure. **Lead based paint was identified in the following locations**:

- Paint on wood door to shop
- Paint on metal door to the basement
- Paint on structural beam on wall (yellow)
- Paint on structural support in warehouse (yellow & gray)

The Code of Federal Regulations (41CFR 101-42.001) defines lead containing paint (LCP) as paint with lead at concentrations >0.06%. The screening results indicated the presence of lead containing paint in two (2) of the samples. The following test locations were lead containing paint:

- Pink paint on CMU (concrete masonry unit) walls
- White paint on the front interior CMU Walls

OSHA does not define LBP on lead content. Any detectible lead in paint makes it lead paint for purposes of complying with OSHA regulations to determine worker exposure per Federal OSHA Regulations at 29 CFR 1926.62, "Lead in Construction" standards. Consequently, for purposes of this study, LCP is considered detectible lead. Accordingly, the contractor must do the following if disturbing the paint by grinding, scraping, or sanding that has the potential to cause LCP to become airborne:

- Conduct initial Exposure Assessment of all workplaces and operations where LCP will be disturbed to determine whether an employee may be exposed to lead at or above the action level (30 μg/m³) calculated as an 8 hour time-weighted average.
- Personnel involved in LBP or LCP must be monitored and directed by a Competent Person who will
 determine appropriate compliance controls and procedures.

In addition, the EPA and GA EPD regulate the LBP and LCP waste stream resulting from abatement and renovation activities, requiring TCLP analysis prior to disposal to determine the hazard class of the waste prior to disposal.

It should be noted that suspect materials, other than those identified during the March 2021 survey may exist within the buildings. Should suspect materials other than those which were identified during this survey be uncovered prior to or during the abatement or renovation process, those materials should be assumed LBP or ACM until sampling and analysis can confirm or deny their content.

Mold Investigation

The EPA and OSHA identify mold as a fungi found throughout our environment indoors and outdoors year round. When elevated levels of moisture are present, mold will likely grow and potentially release toxic spores having negative effects on human health. During the inspection of the structure, the presence of mold was observed on the wallboard materials in the front offices and on carpet and carpet glue in the engineering offices. The source of the moisture in the entrance and the offices is related to roof and window leaks. Water leakage was visible during the site inspection with standing water in several locations in the warehouse from the roof leaking. Also noted was staining on ceiling tiles, floors, and walls throughout the building.

Contour recommends that remediation of the mold impacted areas should follow the Environmental Protection Agency (EPA), Office of Air and Radiation, Indoor Environments Division, Mold Remediation in Schools and Commercial Buildings guidelines to protect the health of building occupants and remediation workers. These recommendations are applicable if the materials are to remain in the structure after the renovation. This may include the CMU walls and wall studs. If the renovation plan includes removal of the nonstructural mold impacted materials, those materials can be handled with the asbestos abatement with worker personal protection and negative air enclosures. Prior to reoccupying or beginning to renovate the structure, Contour recommends that visual and air clearances for mold is conducted.

Mold may be present in additional areas behind walls, cove base, or under carpet. During remediation, interior wall cavities and areas behind wall coverings and cove base should be inspected for additional mold.

Contents

Executive Sur	mmaryi
Contents	iii
Acronyms and	d Abbreviationsiv
Introduction.	
Building Desc	criptions 2
Field Activitie	es
3.1	Visual Assessment-Asbestos3
3.2	Visual Assessment-Lead Based Paint3
3.3	Visual Assessment-Mold3
3.4	Physical Assessment-Asbestos3
3.5	Sample Collection-Asbestos3
3.6	Sample Collection-Lead Based Paint3
3.7	Sample Analysis-Asbestos4
3.8	Sample Analysis-Lead Based Paint4
Regulatory O	verview5
4.1	Asbestos5
4.2	Lead Based Paint5
4.3	Mold6
Findings and	Recommendations 7
5.1	Asbestos Containing Material
5.2	Lead Based Paint
5.3	Mold
General Com	ments 9
Figures	
Figure 1	Sampling Locations for Suspect ACM- (Interior)
Figure 2	Sampling Locations for Suspect ACM- (Exterior & Roof)
Figure 3	Sampling Locations for Suspect LBP
Figure 4	Sampling Locations for Suspect Visible Mold & Moisture
Tables	
Table 1	Asbestos Containing Materials
Table 2	ACM Analytical Results
Table 3	LBP Analytical Results
Table 4	Visible Mold & Moisture
Appendixes	
Appendix A:	Photographic Log
Appendix B:	Asbestos Laboratory Report
Appendix C:	Lead Based Paint Laboratory Report
Annendix D.	Inspector Certification

Acronyms and Abbreviations

ACM Asbestos Containing Material

AHERA Asbestos Hazard Emergency Response Act

CFR Code of Federal Regulations

f/cc Fibers Per Cubic Centimeter of Air

EPA U.S. Environmental Protection Agency

GA EPD Georgia Environmental Protection Division

HA Homogenous Areas

LBP Lead Based Paint

NESHAP National Emission Standards for Hazardous Air Pollutants

NVLAP National Voluntary Laboratory Accreditation Program

OSHA Occupational Safety and Health Administration

PLM Polarized Light Microscopy

RACM Regulated Asbestos Containing Material

SECTION 1.0

Introduction

Contour conducted a hazardous materials survey on the former Whitepath Fab Tech facility located at 118 Industrial Boulevard Blue Ridge, Georgia. The survey was conducted on March 17th, 2021 by an Asbestos Hazard Emergency Response Act (AHERA) certified asbestos inspector in general accordance with our proposal. Building components were surveyed and homogeneous areas (HAs) of suspect ACM were visually identified and documented. Although reasonable effort was made to survey accessible suspect materials, additional suspect but un-sampled materials could be located in walls, in voids or in other concealed areas. Suspect ACM samples were collected in general accordance with the sampling protocols outlined in the Environmental Protection Agency (EPA) regulation 40 Code of Federal Regulations (CFR), Part 61, Subpart M, National Emissions Standards for Hazardous Air Pollutants (NESHAPs). Suspect ACM and LBP samples were delivered to an accredited laboratory for analysis by Polarized Light Microscopy (PLM) and EPA Method SW-846 3050/6010/7420 for total lead.

We understand this asbestos survey was requested to identify and sample suspect ACM and LBP and provide information regarding the identity, location, and condition of ACM and LBP in the interior and exterior building components. EPA regulation 40 CFR 61, Subpart M, NESHAP, prohibits the release of asbestos fibers to the atmosphere during renovation or demolition activities.

1

SECTION 2.0

Building Descriptions

The survey area consisted of the interior and exterior of the former Whitepath Fab Tech building and associated outbuildings. The main building is one story with a small storage basement area on the southern end of the building. The main building is constructed of concrete masonry units (CMU) blocks, brick, and metal frame with sheet metal siding. The roof is a membrane roof system with some metal roofing on expansions. The interior is finished with wallboard and joint compound and exposed CMU walls, exposed roof deck and drop acoustic tile ceilings, and concrete, vinyl composite tile, and carpet floor coverings. The basement is unfinished.

Two additional buildings are located on the property, a well house shed and a two-story storage building located on the southern portion of the property. The well house is wood framed with wood siding and a pitched asphalt shingle roof. The storage shed is also wood framed with wood siding and a metal roof system.

SECTION 3.0

Field Activities

The survey was conducted by Kenneth Moore, an AHERA asbestos inspector. The survey was conducted in general accordance with the sample collection protocols established in EPA regulation 40 CFR, Part 61, Subpart M, NESHAP. A summary of survey activities is provided below.

3.1 Visual Assessment-Asbestos

Our survey activities began with visual observation of the areas specified by the client and in accordance with renovation of the structure to identify HAs of suspect ACM. An HA consists of building materials that appear similar throughout in terms of color, texture, and date of application. The survey was conducted throughout visually accessible areas. Building materials identified as glass, wood, masonry, metal, or rubber were not considered suspect ACM.

3.2 Visual Assessment-Lead Based Paint

Based on results of the visual observation, paint chip samples of suspect LBP were collected in general accordance with EPA protocols. Random samples of suspect materials were collected in each HA. Twenty-three (23) paint chip samples of suspect LBP were collected from the structure.

3.3 Visual Assessment-Mold

Our survey activities included an inspection of visible suspect microbial growth (SMG) on surfaces exposed during the survey or client designated areas. Interior components visible by nondestructive means were inspected for the presence of SMG. No EPA or State of Georgia regulations have been established for inspection protocols. Photographic documentation of visually identified mold was performed.

3.4 Physical Assessment-Asbestos

A physical assessment of each HA of suspect ACM was conducted to assess the friability and condition of the materials. A friable material is defined by the EPA as a material which can be crumbled, pulverized or reduced to powder by hand pressure when dry. Friability was assessed by physically touching suspect materials.

3.5 Sample Collection-Asbestos

Based on results of the visual observation, bulk samples of suspect ACM were collected in general accordance with NESHAP sampling protocols. Random samples of suspect materials were collected in each HA. Sample team members collected bulk samples using wet methods as applicable to reduce the potential for fiber release. Samples were placed in sealable containers and labeled with unique sample numbers using an indelible marker. Eighty-nine (89) bulk asbestos samples were collected with 106 samples or layers tested from 55 HAs of suspect ACM from the structures.

3.6 Sample Collection-Lead Based Paint

Based on results of the visual observation, paint chip samples of suspect LBP were collected in general accordance with EPA protocols. Random samples of suspect materials were collected in each HA. Twenty-three (23) paint chip samples of suspect LBP were collected from the structure.

3.7 Sample Analysis-Asbestos

Suspect ACM samples were delivered under proper chain of custody to Hayes Microbial Consulting (Hayes) of Midlothian, Virginia for analysis by PLM with dispersion staining techniques per EPA's Method for the Determination of Asbestos in Bulk Building Materials (600/R-93/116). The percentage of asbestos, where applicable, was determined by microscopic visual estimation. Hayes is accredited under the National Voluntary Laboratory Accreditation Program (NVLAP) Accreditation No. 500096-0.

3.8 Sample Analysis-Lead Based Paint

Random samples of suspect materials were collected in each HA. Samples were placed in sealable containers and labeled with unique sample numbers using an indelible marker. The samples were transported to Hayes of Midlothian, Virginia and analyzed for lead by EPA Method SW-846 3050/6010/7420 for total lead by Schneider Laboratories Global, Inc. of Richmond, Virginia, a subcontracted lab. The American Industrial Hygiene Association (AIHA) through the Lead Proficiency Analytical Testing Program (EMPAT) accredits laboratories performing analysis of lead in environmental samples including paint, soil, dust wipes, composited wipes and air (AIHA Accreditation No. 100527).

4

Regulatory Overview

4.1 Asbestos

The asbestos NESHAP (40 CFR Part 61, Subpart M) regulates asbestos fiber emissions and asbestos waste disposal practices. It also requires the identification and classification of existing building materials prior to demolition or renovation activity. Under NESHAP, asbestos-containing building materials are classified as either friable, Category I non-friable or Category II non-friable ACM. Friable materials are those that, when dry, may be crumbled, pulverized or reduced to powder by hand pressure. Category I non-friable ACM includes packings, gaskets, resilient floor coverings and asphalt roofing products containing more than 1% asbestos. Category II non-friable ACM are any materials other than Category I materials that contain more than 1% asbestos.

Friable ACM, Category I and Category II non-friable ACM which is in poor condition and has become friable or which will be subjected to drilling, sanding, grinding, cutting or abrading and which could be crushed or pulverized during anticipated renovation or demolition activities are considered regulated ACM (RACM). A memo issued by the Georgia Environmental Protection Division (GA EPD) clarifies that Category I non-friable ACM becomes RACM if it has become friable or it will be or has been subjected to sanding, grading, cutting, or abrading, whether by manual or mechanical means.

RACM must be removed prior to renovation or demolition activities which will disturb the materials. In the state of Georgia, asbestos activities are regulated by the GA EPD. The GA EPD requires that asbestos-related activities conducted in a public building be performed by personnel licensed by the GA EPD. The owner or operator must provide the GA EPD with written notification of planned removal activities at least 10 working days prior to the commencement of asbestos abatement activities. Asbestos abatement must be performed by GA EPD-licensed asbestos abatement contractors in accordance with a Project Design prepared by an GA EPD-licensed Asbestos Consultant.

The Occupational Safety and Health Administration (OSHA) Asbestos standard for construction (29 CFR 1926.1101) regulates workplace exposure to asbestos. The OSHA standard requires that employee exposure to airborne asbestos fibers be maintained below 0.1 asbestos fibers per cubic centimeter (f/cc) of air. The OSHA standard classifies construction and maintenance activities which could disturb ACM, and specifies work practices and precautions which employers must follow when engaging in each class of regulated work.

4.2 Lead Based Paint

The Occupational Safety and Health Administration (OSHA) regulates occupational exposures to asbestos and lead through the General Industry and Construction Industry asbestos standards (29 CFR 1910.1001 and 29 CFR 1926.1101), and the Respiratory Protection Standard (29 CFR 1910.134). These standards are designed to protect workers from asbestos or lead exposure through a series of requirements based on exposures above the permissible exposure limit (PEL). OSHA Regulations apply to all construction work where an employee may be occupationally exposed to lead, and therefore may be applicable to renovation or demolition projects involving paints with any concentration of lead. These requirements include:

- Assuming that certain building materials may contain asbestos and lead, and that buildings constructed prior to 1980 may contain ACM and LBP.
- Implementing medical surveillance, respiratory protection, and training programs that include medical examinations, provision of respiratory and personal protective equipment (PPE), and training of workers and supervisors for certain classes of work.
- Training persons who may be exposed to asbestos and lead during their work.

- Using specific types of respirators dependent on the asbestos concentrations being generated.
- For asbestos and lead related work activities work practices and equipment such as negative- pressure
 enclosures, wet methods, air filtration equipment, decontamination units, warning signs and labels, and
 waste containers.
- Collecting and analyzing air samples to evaluate potential worker exposures.
- Mandating contractor registration with and notification of asbestos or lead work to the local OSHA enforcement agency.
- Notifying occupants for projects covered by the standard.

It should be noted that a "Lead-Based Paint Inspection" is a survey to discover the existence of lead-based paint only, which is defined as paint or other coatings with lead levels of 1.0 milligrams per square centimeter (mg/cm²) or 0.5%. There are many other building materials, which may contain lead in the average building. When conducting construction activities which disturb lead in any amount or create an exposure to workers, the employer is required to provide worker protection and conduct exposure assessments. All employers should consult Federal OSHA Regulations at 29 CFR 1926.62, "Lead in Construction" standards for complete requirements.

4.3 Mold

The Georgia Department of Public Health, Environmental Health Section serves as a resource for sharing educational information on Indoor Air Quality (IAQ) published by recognized professional associations, academic institutions and governmental organizations. IAQ is not a regulated program and the branch does not offer any specific services related to mold growth indoors. Mold inspections, testing or remediation practices have no enforceable state or federal standards.

Molds reproduce by means of tiny spores; the spores are invisible to the naked eye and float through outdoor and indoor air. Mold may begin growing indoors when mold spores land on surfaces that are wet. Molds produce allergens (substances that can cause allergic reactions), irritants, and in some cases, potentially toxic substances (mycotoxins). Inhaling or touching mold or mold spores may cause allergic reactions in sensitive individuals. Allergic responses include hay fever-type symptoms, such as sneezing, runny nose, red eyes, and skin rash (dermatitis).

No state or Federal regulations are present for the presence of visible mold on materials to be removed and/or disposed. In addition, no regulations are present for the airborne mold contaminants.

Although no regulations have been established, EPA does have guidelines for mold remediation in schools and commercial buildings (EPA 402-K-01-001). The measures are established to protect the health of the building occupants and remediation personnel. Using this document, individuals with little or no experience with mold remediation should be able to make a reasonable judgment as to whether the situation can be handled in-house.

The key approach to mold remediation is to first address the moisture problem then address the material that has mold growth. Clean and dry water damaged areas and remove any moldy building materials. Personal protective equipment (PPE) should be utilized during the removal of building materials with mold. PPE should include respirators, goggles, and gloves. During the removal of the building materials with mold, spores are potentially released and the object of the contractor should be to limit human exposure to the workers, building occupants, and surrounding residents. A mold abatement plan should be designed prior to initiation of work with these factors in place prior to remediation.

Findings and Recommendations

5.1 Asbestos Containing Material

The EPA and OSHA define ACM as any material that contains greater than 1% asbestos. Eighty-nine (89) bulk asbestos samples were collected with 106 samples or layers tested from 55 HAs of suspect ACM from the structures. The following ACM were identified:

- Vinyl Composition Floor Tile
- Floor Tile Mastic
- Remnant Flashing
- Roof Coating
- Remnant Parapet
- Remnant Roof
- Flashing

Contour recommends that the identified ACM be removed and disposed of by a GA EPD-licensed asbestos abatement contractor prior to the renovation activity that would disturb the ACM identified.

It should be noted that suspect materials, other than those identified during the March 2021 survey may exist within the structures. Should suspect materials other than those which were identified during this survey be uncovered prior to or during the renovation process, those materials should be assumed asbestos-containing until sampling and analysis can confirm or deny their asbestos content.

5.2 Lead Based Paint

Housing and Urban Development (HUD) and the EPA define lead-based paint as a paint or other surface coating which contains lead equal to or greater than 0.5% by weight. Twenty-three (23) sample locations were submitted for laboratory analysis from the interior of the structure. **Lead based paint was identified in the following locations**:

- Paint on wood door to shop
- Paint on metal door to the basement
- Paint on structural beam on wall (yellow)
- Paint on structural support in warehouse (yellow & gray)

The Code of Federal Regulations (41CFR 101-42.001) defines lead containing paint (LCP) as paint with lead at concentrations >0.06%. The screening results indicated the presence of lead containing paint in two (2) of the samples. The following test locations were lead containing paint:

- Pink paint on CMU (concrete masonry unit) walls
- White paint on the front interior CMU Walls

OSHA does not define LBP on lead content. Any detectible lead in paint makes it lead paint for purposes of complying with OSHA regulations to determine worker exposure per Federal OSHA Regulations at 29 CFR 1926.62, "Lead in Construction" standards. Consequently, for purposes of this study, LCP is considered detectible lead. Accordingly, the contractor must do the following if disturbing the paint by grinding, scraping, or sanding that has the potential to cause LCP to become airborne:

• Conduct initial Exposure Assessment of all workplaces and operations where LCP will be disturbed to determine whether an employee may be exposed to lead at or above the action level (30 µg/m³) calculated as an 8 hour time-weighted average.

• Personnel involved in LBP or LCP must be monitored and directed by a Competent Person who will determine appropriate compliance controls and procedures.

In addition, the EPA and GA EPD regulate the LBP and LCP waste stream resulting from abatement and renovation activities, requiring TCLP analysis prior to disposal to determine the hazard class of the waste prior to disposal.

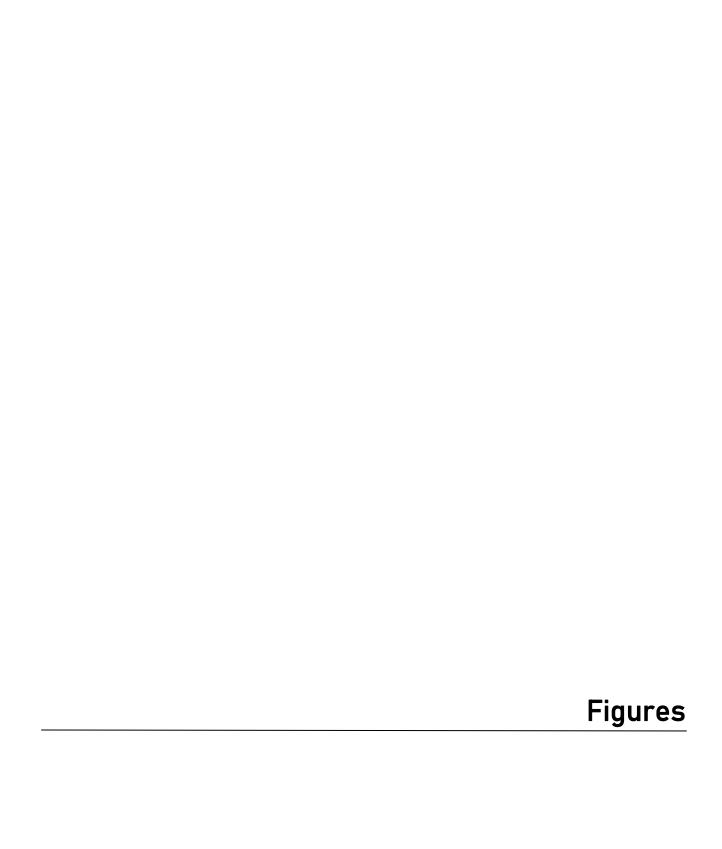
It should be noted that suspect materials, other than those identified during the March 2021 survey may exist within the buildings. Should suspect materials other than those which were identified during this survey be uncovered prior to or during the abatement or renovation process, those materials should be assumed LBP or ACM until sampling and analysis can confirm or deny their content.

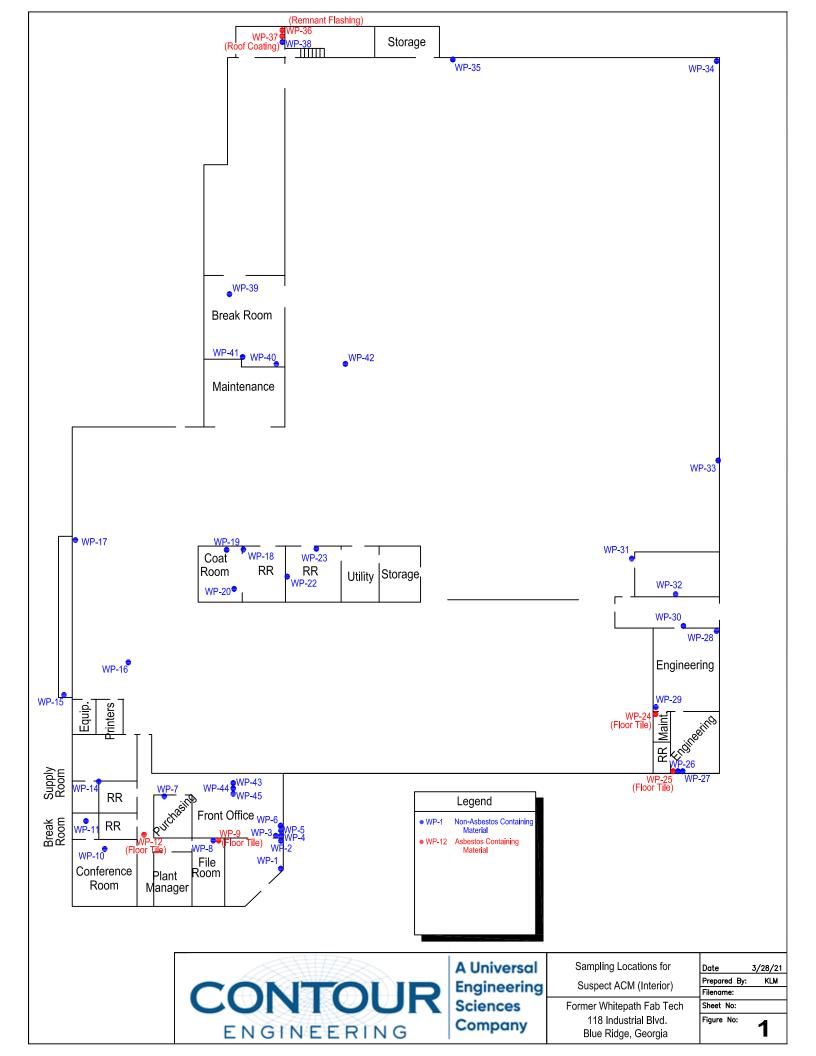
5.3 Mold

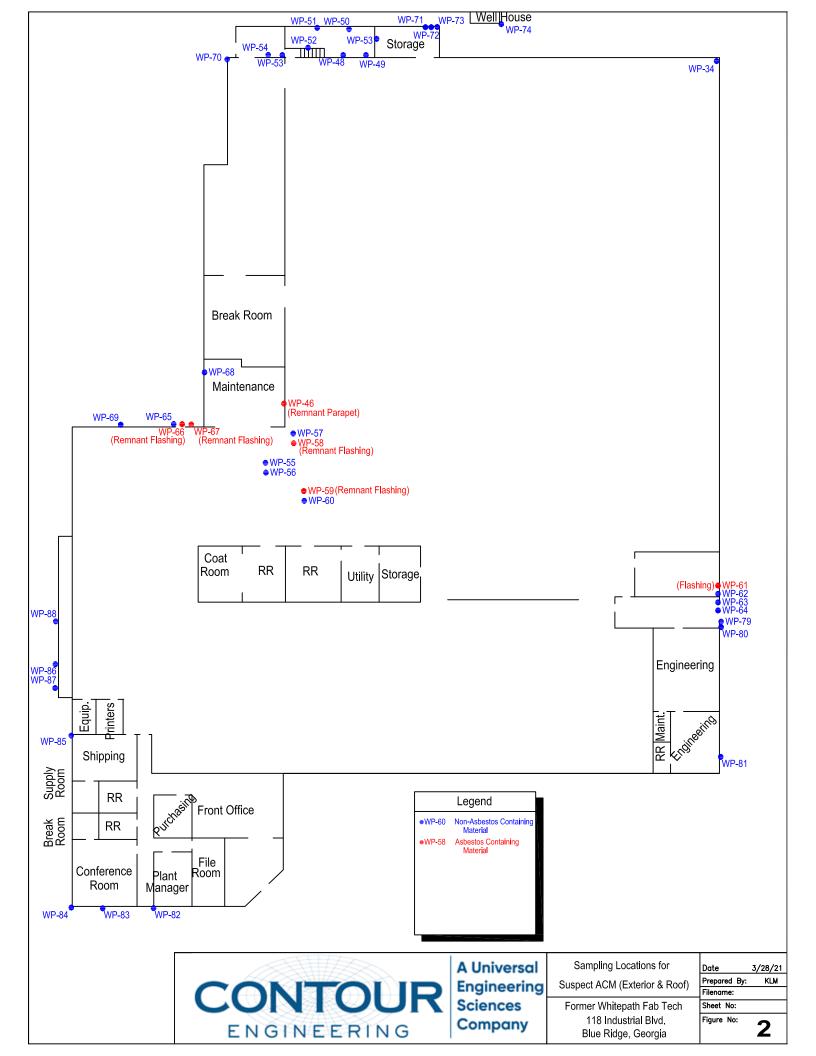
The EPA and OSHA identify mold as a fungi found throughout our environment indoors and outdoors year round. When elevated levels of moisture are present, mold will likely grow and potentially release toxic spores having negative effects on human health. During the inspection of the structure, the presence of mold was observed on the wallboard materials in the front offices and on carpet and carpet glue in the engineering offices. The source of the moisture in the entrance and the offices is related to roof and window leaks. Water leakage was visible during the site inspection with standing water in several locations in the warehouse from the roof leaking. Also noted was staining on ceiling tiles, floors, and walls throughout the building.

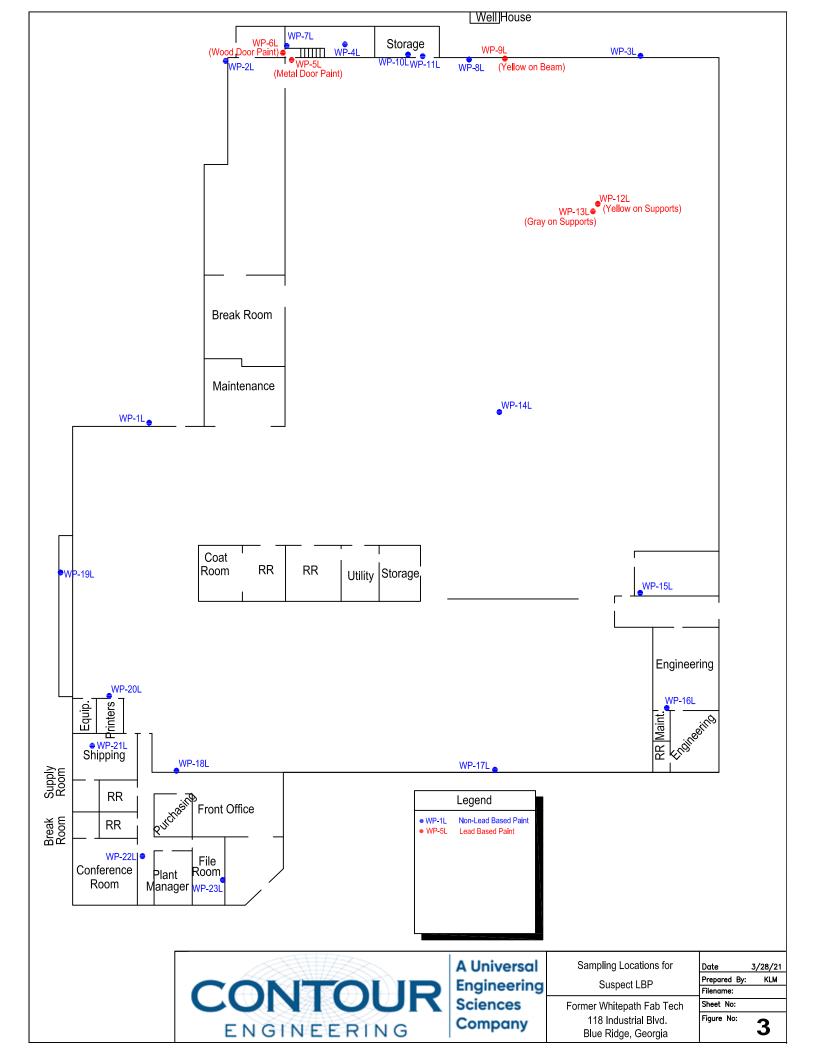
Contour recommends that remediation of the mold impacted areas should follow the Environmental Protection Agency (EPA), Office of Air and Radiation, Indoor Environments Division, Mold Remediation in Schools and Commercial Buildings guidelines to protect the health of building occupants and remediation workers. These recommendations are applicable if the materials are to remain in the structure after the renovation. This may include the CMU walls and wall studs. If the renovation plan includes removal of the nonstructural mold impacted materials, those materials can be handled with the asbestos abatement with worker personal protection and negative air enclosures. Prior to reoccupying or beginning to renovate the structure, Contour recommends that visual and air clearances for mold is conducted.

Mold may be present in additional areas behind walls, cove base, or under carpet. During remediation, interior wall cavities and areas behind wall coverings and cove base should be inspected for additional mold.




SECTION 6.0


General Comments


This hazardous materials survey was conducted in a manner consistent with the level of care and skill ordinarily exercised by members of the profession currently practicing under similar conditions in the same locale. The results, findings, conclusions and recommendations expressed in this report are based on conditions observed during our survey of the specified areas. The information contained in this report is relevant to the date on which this survey was performed, and should not be relied upon to represent conditions at a later date. This report has been prepared on behalf of and exclusively for use by the client for specific application to their project as discussed. This report is not a bidding document. Contractors or consultants reviewing this report must draw their own conclusions regarding further investigation or remediation deemed necessary. Contour does not warrant the work of regulatory agencies, laboratories or other third parties supplying information which may have been used in the preparation of this report. No warranty, express or implied is made.

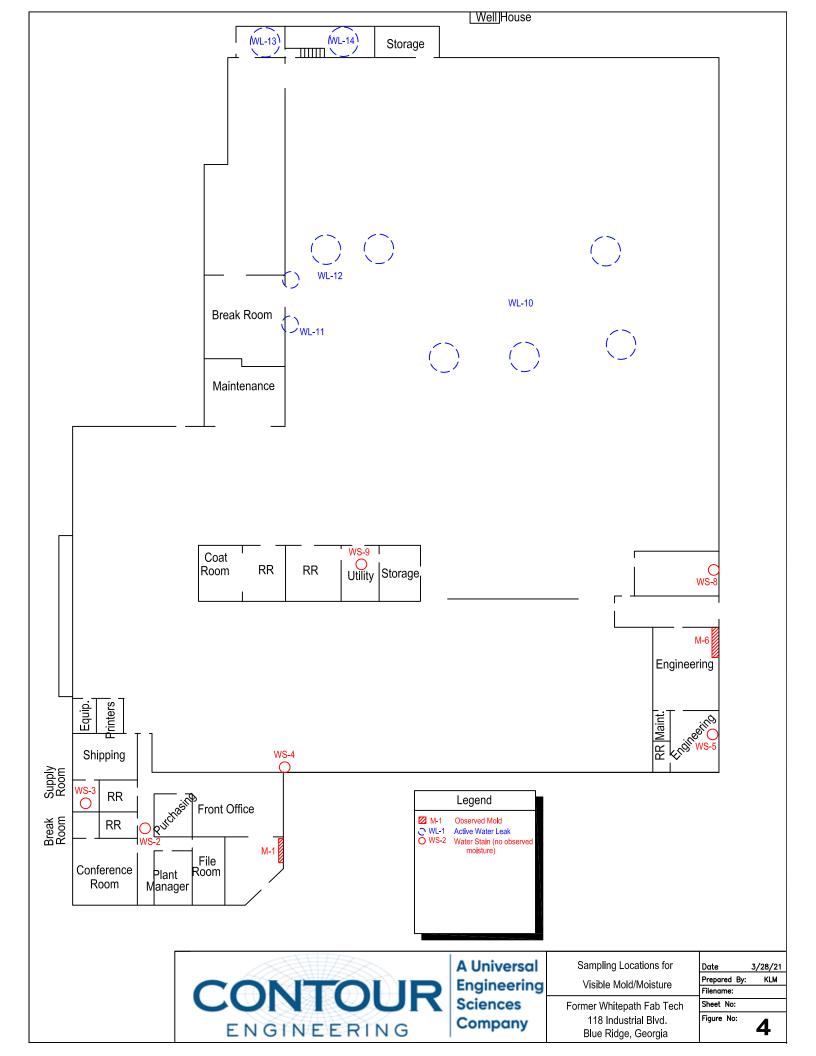


Table 1: Asbestos Containing Materials Former Whitepath Fab Tech - 118 Industrial Blvd Blue Ridge, GA

Sample Number	Material Description	Lab Notes	EPA NESHAP Classification	Amount and Type of Asbestos	Photograph Number
WP-9	FTM/Carpet Glue	FT:2%;M:ND;CG:ND	Cat.1	2% Chrysotile	1
WP-12	FTM	FT:2%;M:ND	Cat.1	2% Chrysotile	2
WP-24	FTM/Carpet Glue	FT:ND;M:6%;CG:ND	Cat.1	6% Chrysotile	3
WP-25	FTM/Carpet Glue	FT:ND;M:4%;CG:ND	Cat.1	4% Chrysotile	4
WP-36	Remnant Flashing		Cat.1	2% Chrysotile	5
WP-37	Roof Coating		Cat.1	4% Chrysotile	5
WP-46	Remnant Parapet		Cat.1	6% Chrysotile	6
WP-58	Remnant Flash		Cat.1	2% Chrysotile	7
WP-59	Remnant Roof		Cat.1	3% Chrysotile	8
WP-61	Flashing		Cat.1	3% Chrysotile	9
WP-66	Remnant Flash		Cat.1	2% Chrysotile	10
WP-67	Remnant Flash		Cat.1	2% Chrysotile	10

CG = Carpet Glue

M = Mastic

FT = Floor Tile

Table 2: ACM Analytical Results Former Whitepath Fab Tech - 118 Industrial Blvd Blue Ridge, GA

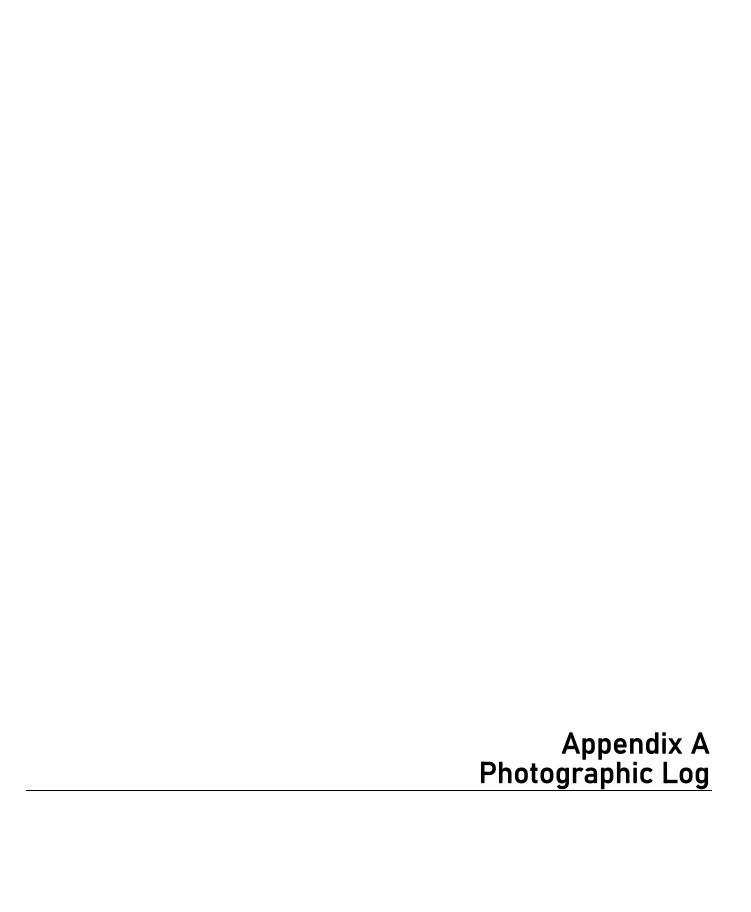
								EPA
Sample					Damage	Friable		NESHAP
Number	Material	Lab Notes	НА	Condition	_	(Y/N)	Asbestos Type-%	Category
WP-1	WB/JC	WB:ND;JC:ND	1,2	Good	Low	Υ	NAO	NA
WP-2	Mortar/Grout		3	Good	Low	N	NAO	NA
WP-3	FTM/Carpet Glue	FT:ND;M:ND;CG:ND	4,5,6	Good	Low	N	NAO	NA
WP-4	Cove Glue		7	Good	Low	N	NAO	NA
WP-5	СТ		8	Good	Low	Υ	NAO	NA
WP-6	WB/JC	WB:ND;JC:ND	1,2	Good	Low	Υ	NAO	NA
WP-7	Texture - Popcorn		9	Good	Low	Υ	NAO	NA
WP-8	Texture - Popcorn		9	Good	Low	Υ	NAO	NA
WP-9	FTM/Carpet Glue	FT:2%;M:ND;CG:ND	10,5,6	Good	Low	N	2% Chrysotile	Cat.1
WP-10	Texture - Popcorn		9	Good	Low	Υ	NAO	NA
WP-11	FTM	FT:ND;M:ND	11,5	Good	Low	N	NAO	NA
WP-12	FTM	FT:2%;M:ND	10,5	Good	Low	N	2% Chrysotile	Cat.1
WP-14	WB/JC	WB:ND;JC:ND	1,2	Good	Low	Υ	NAO	NA
WP-15	Foam Insulation		12	Good	Low	Υ	NAO	NA
WP-16	Expoxy Floor Filler		13	Good	Low	N	NAO	NA
WP-17	Sealant		14	Good	Low	N	NAO	NA
WP-18	Door Caulk		15	Good	Low	N	NAO	NA
WP-19	Tile Coating		16	Good	Low	N	NAO	NA
WP-20	СТ		8	Good	Low	Υ	NAO	NA
WP-21	Caulk/Fireproof		17	Good	Low	N	NAO	NA
WP-22	Window Glaze		18	Good	Low	N	NAO	NA
WP-23	Door Caulk		15	Good	Low	N	NAO	NA
WP-24	FTM/Carpet Glue	FT:ND;M:6%;CG:ND	19,20,6		Low	N	6% Chrysotile	Cat.1
WP-25	FTM/Carpet Glue	FT:ND;M:4%;CG:ND	19,20,6	Good	Low	N	4% Chrysotile	Cat.1
WP-26	WB/JC	WB:ND;JC:ND	1,2	Good	Low	Υ	NAO	NA
WP-27	Cove Glue Only		7	Good	Low	N	NAO	NA
WP-28	WB/JC	WB:ND;JC:ND	1,2	Good	Low	Υ	NAO	NA
WP-29	WB/JC	WB:ND;JC:ND	1,2	Good	Low	Υ	NAO	NA
WP-30	Door Caulk		15	Good	Low	N	NAO	NA
WP-31	Door Caulk		15	Good	Low	N	NAO	NA
WP-32	FTM/Carpet Glue	FT:ND;M:ND;CG:ND	21,5,6	Good	Low	N	NAO	NA
WP-33	Window Caulk		22	Good	Low	N	NAO	NA
WP-34	HVAC Damper		23	Good	Low	N	NAO	NA
WP-35	Pen Caulk		24	Good	Low	N	NAO	NA
WP-36	Flashing		25	Good	Low	N	2% Chrysotile	Cat.1
WP-37	Roof Coating		26	Good	Low	N	4% Chrysotile	Cat.1
WP-38	Window Caulk		22	Good	Low	N	NAO	NA
WP-39	Floor Coat	MAD NO 10 NO	27	Good	Low	N	NAO	NA NA
WP-40	WB/JC	WB:ND;JC:ND	1,2	Good	Low	Y	NAO	NA NA
WP-41	JC		2	Good	Low	Y	NAO	NA NA
WP-42	Floor Coat		28	Good	Low	N	NAO	NA NA
WP-43	HVAC Damper		23	Good	Low	N	NAO	NA NA
WP-44	Pipe Wrap Insulation		29	Good	Low	Y	NAO	NA NA
WP-45	HVAC Mastic		30	Good	Low	N	NAO	NA

								ED.A
Sample					Damage	Friable		EPA NESHAP
Number	Material	Lab Notes	НА	Condition	Potential	(Y/N)	Asbestos Type-%	Category
WP-46	Remnant Parapet		31	Good	Low	N	6% Chrysotile	Cat.1
WP-47	Chimney Caulk		32	Good	Low	N	NAO	NA
WP-48	Window Flashing		33	Good	Low	N	NAO	NA
WP-49	Window Caulk		22	Good	Low	N	NAO	NA
WP-50	Flashing		34	Good	Low	N	NAO	NA
WP-51	Rolled Roof		35	Good	Low	N	NAO	NA
WP-52	Roof Sealant		36	Good	Low	N	NAO	NA
WP-53	Brick Caulk		37	Good	Low	N	NAO	NA
WP-54	Membrane Caulk		38	Good	Low	N	NAO	NA
WP-55	Remnant Flashing		39	Good	Low	N	NAO	NA
WP-56	HVAC Caulk		40	Good	Low	N	NAO	NA
WP-57	Vent Caulk		41	Good	Low	N	NAO	NA
WP-58	Remnant Flashing		42	Good	Low	N	2% Chrysotile	Cat.1
WP-59	Remnant Roof		43	Good	Low	N	3% Chrysotile	Cat.1
WP-60	Parapet		44	Good	Low	N	NAO	NA
WP-61	Flashing		45	Good	Low	N	3% Chrysotile	Cat.1
WP-62	Stucco Caulk		46	Good	Low	N	NAO	NA
WP-63	Structure Caulk		47	Good	Low	N	NAO	NA
WP-64	Stucco		48	Good	Low	N	NAO	NA
WP-65	Repair Caulk		49	Good	Low	N	NAO	NA
WP-66	Remnant Flashing		42	Good	Low	N	2% Chrysotile	Cat.1
WP-67	Remnant Flashing		42	Good	Low	N	2% Chrysotile	Cat.1
WP-68	Window Caulk		22	Good	Low	N	NAO	NA
WP-69	Door Caulk		50	Good	Low	N	NAO	NA
WP-70	Repair Caulk		49	Good	Low	N	NAO	NA
WP-71	Texture		51	Good	Low	N	NAO	NA
WP-72	Texture		51	Good	Low	N	NAO	NA
WP-73	Texture		51	Good	Low	N	NAO	NA
WP-74	Shingle		42	Good	Low	N	NAO	NA
WP-75	HVAC Mastic		43	Good	Low	N	NAO	NA
WP-76	HVAC Damper		23	Good	Low	N	NAO	NA
WP-77	Stucco		48	Good	Low	N	NAO	NA
WP-78	HVAC Mastic		43	Good	Low	N	NAO	NA
WP-79	Door Caulk		50	Good	Low	N	NAO	NA
WP-80	Stucco		48	Good	Low	N	NAO	NA
WP-81	Window Caulk		22	Good	Low	N	NAO	NA
WP-82	Door Caulk		50	Good	Low	N	NAO	NA
WP-83	Gap Caulk		52	Good	Low	N	NAO	NA
WP-84	Stucco		48	Good	Low	N	NAO	NA
WP-85	HVAC Caulk		40	Good	Low	N	NAO	NA
WP-86	Concrete Coat		53	Good	Low	N	NAO	NA NA
WP-87	Concrete Coat		53	Good	Low	N	NAO	NA
WP-88 WP-89	Pen Repair Window Glaze		54 55	Good Good	Low	N N	NAO NAO	NA NA
WP-89			JO	Guuu	LUW	IN	IVAU	INA

WB = Wallboard
JC = Joint Compound
M = Mastic
FT = Floor Tile

CT = Ceiling Tile CG = Carpet Glue Pen = Penetration

Table 3: Lead Based Paint Sample Results Former Whitepath Fab Tech - 118 Industrial Blvd Blue Ridge, GA


Sample ID	Component	Location	Results (% by weight)
WP-1L	Tan on CMU	CMU Wall	<0.00293
WP-2L	Pink on CMU	CMU Wall	0.0691
WP-3L	Tan on Brick	Brick Wall	<0.00307
WP-4L	Silver Paint in Basement	Basement	0.0583
WP-5L	Metal Door paint	Warehouse Metal Door	2.4900
WP-6L	Wood Door paint	Warehouse Wood Door	0.9380
WP-7L	Red on Brick	Brick Wall	0.0192
WP-8L	Yellow on CMU	CMU Wall	<0.00292
WP-9L	Yellow on Metal Beam	Metal Beam	2.8200
WP-10L	Peach Wood Door	Warehouse Wood Door	<0.0182
WP-11L	Gray on Floor & Walls	Warehouse Floor & Walls	<0.00333
WP-12L	Yellow on Supports	Warehouse Support	1.8400
WP-13L	Gray on Supports	Warehouse Support	7.0600
WP-14L	Silver on Drain Pipe	Warehouse Drain Pipe	0.0810
WP-15L	Peach on Wood Trim	Office Wood Trim	0.0084
WP-16L	Gray on Wood Door with Blue	Wood Door	0.0123
WP-17L	Yellow on CMU/Brick	CMU/Brick	<0.00314
WP-18L	Yellow on Wood Panel	Wood Panel	<0.00606
WP-19L	Tan on CMU	CMU Wall	<0.00298
WP-20L	Gray Floor Paint	Warehouse Floor	<0.00292
WP-21L	Pink on Paneling	Paneling	<0.00294
WP-22L	Tan Trim in Offices	Trim in Offices	<0.00672
WP-23L	Tan on Panel Walls	Office Panel Wall	<0.00329

CMU=Concrete masonry unit

All Samples in bold are Lead Based Paint

Table 4: Visual Mold & Moisture Former Whitepath Fab Tech - 118 Industrial Blvd Blue Ridge, GA

Figure ID	Observation				
M-1	Mold on window sill				
WS-2	Water stain on ceiling tile				
WS-3	Water stain on floor in water heater room				
WS-4	Water stain on floor from roof leak				
WS-5	Water stain on ceiling tile				
M-6	Mold under carpet in engineering office				
WS-7	Water stain on ceiling tile				
WS-8	Water stain on ceiling tile				
WS-9	Water stain on concrete masonry block				
WL-10	Four (4) active leaks in warehouse/manufacturing area				
WL-11	Water stain on ceilings tile with moisture on wood wall				
WL-12	Active leaks along brick wall				
WL-13	Water leaks in shop				
WL-14	Flooded basement				

Photograph: 1

View of asbestos containing floor tile located in the front office of the building (Sample WP-9).

Former Whitepath Fab Tech

118 Industrial Blvd. Blue Ridge, GA

Photograph: 2

View of asbestos containing floor tile located in the front office hallway of the building (Sample WP-12).

Former Whitepath Fab Tech

View of asbestos containing floor tile mastic located in the engineering office (Sample WP-24).

Former Whitepath Fab Tech

118 Industrial Blvd. Blue Ridge, GA

Photograph: 4

View of asbestos containing floor tile mastic located in the engineering office (Sample WP-25).

Former Whitepath Fab Tech

View of asbestos containing remnant flashing and roof coating located in the facility shop (Samples WP-36 & WP-37).

Former Whitepath Fab Tech

118 Industrial Blvd. Blue Ridge, GA

Photograph: 6

View of asbestos containing remnant parapet located on the roof (Sample WP-46).

Former Whitepath Fab Tech

Photograph: 7 View of roof (Si

View of asbestos containing remnant flashing located on the HVAC duct on the roof (Sample WP-58).

Former Whitepath Fab Tech

118 Industrial Blvd. Blue Ridge, GA

Photograph: 8

View of asbestos containing remnant roof located on the roof (Sample WP-59).

Former Whitepath Fab Tech

View of asbestos containing flashing located on the back of the parking lot decorative parapet (Sample WP-61).

Former Whitepath Fab Tech

118 Industrial Blvd. Blue Ridge, GA

Photograph: 10

View of asbestos containing remnant mastic top & bottom located on the exterior wall of the building (Samples WP-66 & WP-67).

Former Whitepath Fab Tech

Photograph: 11 View of lead based paint on the metal door to the basement (Sample WP-5L).

Former Whitepath Fab Tech

118 Industrial Blvd. Blue Ridge, GA

Photograph: 12 View of lead based paint on the wood door of the shop (Sample WP-6L).

Former Whitepath Fab Tech

Photograph: 13 View of lead based paint on the steel beam support (Sample WP-9L).

Former Whitepath Fab Tech

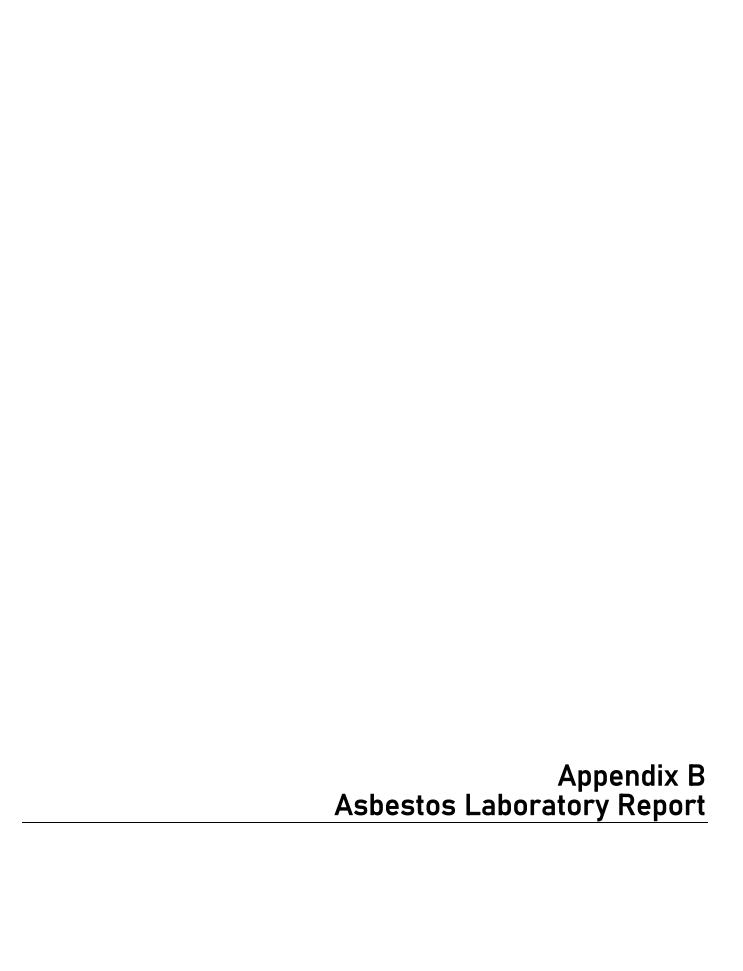
118 Industrial Blvd. Blue Ridge, GA

Photograph: 14 View of asbestos containing paint on the steel support beam in the facility (gray and yellow) (Samples WP-12L & WP-13L).

Former Whitepath Fab Tech

Photograph: 15 View of mold on joint compound in the facility office entrance (Location M-1).

Former Whitepath Fab Tech


118 Industrial Blvd. Blue Ridge, GA

Photograph: 16 View of mold on carpet/carpet glue located in the engineering office (Location M-5).

Former Whitepath Fab Tech

Analysis Report prepared for

Contour Engineering

1955 Vaughn Road Suite 101 Kennesaw, GA 30144

Phone: (770) 653-4891

Blue Ridge White Path

Collected: March 17, 2021 Received: March 22, 2021 Reported: March 25, 2021 We would like to thank you for trusting Hayes Microbial for your analytical needs!
We received 89 samples by FedEx in good condition for this project on March 22nd, 2021.

The results in this analysis pertain only to this job, collected on the stated date, and should not be used in the interpretation of any other job. This report may not be duplicated, except in full, without the written consent of Hayes Microbial Consulting, LLC..

This laboratory bears no responsibility for sample collection activities, analytical method limitations, or your use of the test results. Interpretation and use of test results are your responsibility. Any reference to health effects or interpretation of mold levels is strictly the opinion of Hayes Microbial. In no event, shall Hayes Microbial or any of its employees be liable for lost profits or any special, incidental or consequential damages arising out of the use of these test results.

Steve Hayes, BSMT(ASCP) Laboratory Director

Hayes Microbial Consulting, LLC.

EPA Laboratory ID: VA01419

John N. Hayes

Lab ID: #188863

DPH License: #PH-0198

Blue Ridge White Path #21009580

Asbestos PLM Bulk EPA 600/R-93, M-4/82-020

#	Sample	Material Description	Non-Asbestos Fibers	Asbestos Fibers
1	1 - WB / JC	Drywall / White	12% Cellulose Fibers	None Detected
		Joint Compound / Tan		None Detected
2	2 - Mortar / Grout	Mortar / Tan		None Detected
		Grout / White		None Detected
3	3 - FTM /Carpet Glue	Tile / Cream		None Detected
		Adhesive / Yellow		None Detected
4	4 - Cove Glue	Cove Base / Pink		None Detected
		Adhesive / White		None Detected
5	5 - CT	Ceiling Tile / Gray	25% Cellulose Fibers 5% Fiberglass	None Detected
6	6 - WB / JC	Drywall / White	10% Cellulose Fibers	None Detected
		Joint Compound / Cream		None Detected
7	7 - Texture - Popcorn	Texture / Gray/White		None Detected
8	8 - Texture - Popcorn	Popcorn Ceiling / White		None Detected
9	9 - FTM / Carpet Glue	Tile / Cream		2% Chrysotile
		Adhesive / Yellow		None Detected

HAYES
MICROBIAL CONSULTING

Collected: Mar 17, 2021

Received: Mar 22, 2021

Reported: Mar 25, 2021

Project Analyst: Meivis Sanchez, Mairis Sanchez

Date: **03 - 25 - 2021**

Reviewed By:

Renaldo Drakes,

Date:

Kennesaw, GA 30144

(770) 653-4891

Blue Ridge White Path #21009580

Asbestos PLM Bulk

EPA 600/R-93, M-4/82-020

#	Sample	Material Description	Non-Asbestos Fibers	Asbestos Fibers
10	10 - Texture - Popcorn	Popcorn Ceiling / White		None Detected
11	11 - FTM	Tile / Light Gray		None Detected
		Adhesive / Brown		None Detected
12	12 - FTM	Tile / Cream		2% Chrysotile
		Adhesive / Brown		None Detected
13	13 - Cove Glue Only			(Not Analyzed)
	Lab Note: Sample Bag Empty.			
14	14 - WB / JC	Drywall / White	10% Cellulose Fibers	None Detected
		Joint Compound / White		None Detected
15	15 - Foam Inslation	Foam / Yellow		None Detected
16	16 - Floor Filler - Epoxy	Glass / Clear		None Detected
17	17 - Sealant	Bulk Material / Gray/Cream		None Detected
18	18 - Door Caulk	Glazing / Cream		None Detected
19	19 - Tile Coating	Bulk Material / Red		None Detected

Collected: Mar 17, 2021

Received: Mar 22, 2021

Reported: Mar 25, 2021

Project Analyst:
Meivis Sanchez, Mairis Sanchez

Date: 03 - 25 - 2021

Reviewed By:

Renaldo Drakes,

Date: **03 - 25 - 2021**

Blue Ridge White Path #21009580

Asbestos PLM Bulk

EPA 600/R-93, M-4/82-020

	•••	M	N A L . 51	EPA 000/R-93, W-4/62-02
#	Sample	Material Description	Non-Asbestos Fibers	Asbestos Fibers
20	20 - CT	Ceiling Tile / Gray	20% Cellulose Fibers 5% Fiberglass	None Detected
21	21 - Caulk / Fireproof	Foam / Tan		None Detected
22	22 - Window Glaze	Glazing / Blue		None Detected
23	23 - Door Caulk	Caulk / White/Brown		None Detected
24	24 - FTM / Carpet Glue	Tile / Gray		None Detected
		Mastic / Black		6% Chrysotile
		Adhesive / Yellow		None Detected
25	25 - FTM / Carpet Glue	Tile / White		None Detected
		Mastic / Black		4% Chrysotile
26	26 - WB / JC	Drywall / White	12% Cellulose Fibers	None Detected
		Joint Compound / Cream		None Detected
27	27 - Cove Glue Only	Adhesive / Yellow		None Detected
28	28 - WB / JC	Drywall / White	10% Cellulose Fibers	None Detected
		Joint Compound / Cream		None Detected

HAYES
MICROBIAL CONSULTING

Collected: Mar 17, 2021

Received: Mar 22, 2021

Reported: Mar 25, 2021

Project Analyst:
Meivis Sanchez, Mains Sanchez

03 - 25 - 2021

Date:

Reviewed By: Renaldo Drakes,

03 - 25 - 2021

Date:

Blue Ridge White Path #21009580

Asbestos PLM Bulk

EPA 600/R-93, M-4/82-020

#	Sample	Material Description	Non-Asbestos Fibers	Asbestos Fibers
29	29 - WB / JC	Drywall / White	10% Cellulose Fibers	None Detected
		Joint Compound / Cream		None Detected
30	30 - Door Caulk	Caulk / White		None Detected
31	31 - Door Caulk	Caulk / Green		None Detected
32	32 - FTM / Carpet Glue	Tile / Tan		None Detected
		Adhesive / Yellow		None Detected
		Mastic / Black		None Detected
33	33 - Window Caulk	Caulk / Black		None Detected
34	34 - HVAC Damper	Bulk Material / Black	8% Fiberglass	None Detected
35	35 - Pen Caulk	Caulk / Black		None Detected
36	36 - Flashing	Bulk Material / Cream/Black		2% Chrysotile
37	37 - Roof Coat	Bulk Material / Black		4% Chrysotile
38	38 - Window Caulk	Caulk / Cream		None Detected
39	39 - Floor Coat	Bulk Material / Gray		None Detected

HAYES
MICROBIAL CONSULTING

Collected: Mar 17, 2021

Received: Mar 22, 2021

Reported: Mar 25, 2021

Project Analyst: Meivis Sanchez, Mairis Sanchez

03 - 25 - 2021

Date:

Reviewed By:

Renaldo Drakes,

Date:

Blue Ridge White Path #21009580

Asbestos PLM Bulk

EPA 600/R-93, M-4/82-020

#	Sample	Material Description	Non-Asbestos Fibers	Asbestos Fibers
40	40 - WB / JC	Drywall / White	10% Cellulose Fibers	None Detected
		Joint Compound / Cream		None Detected
41	41 - JC	Texture / White		None Detected
42	42 - Floor Coat	Bulk Material / Clear		None Detected
43	43 - HVAC Damper	Bulk Material / Black		None Detected
44	44 - Pipe Wrap Insulation	Bulk Material / Cream	60% Mineral/Glass wool	None Detected
45	45 - HVAC Mastic	Mastic / Black	None Detected	
46	46 - Remnant Parapet	Bulk Material / Black		6% Chrysotile
47	47 - Chimney Caulk	Caulk / White		None Detected
48	48 - Window Flash	Bulk Material / Black/White		None Detected
49	49 - Window Caulk	Caulk / White		None Detected
50	50 - Flashing	Bulk Material / Black/White		None Detected
51	51 - Rolled Roof	Bulk Material / Black	8% Cellulose Fibers	None Detected
52	52 - Roof Sealant	Bulk Material / White		None Detected
53	53 - Brick Caulk	Caulk / White		None Detected

HAYES
MICROBIAL CONSULTING

Collected: Mar 17, 2021

Received: Mar 22, 2021

Reported: Mar 25, 2021

Project Analyst:
Meivis Sanchez, Mairis Sanchez

Date: **03 - 25 - 2021**

Reviewed By:

Renaldo Drakes,

Date: **03 - 25 - 2021**

Kennesaw, GA 30144

(770) 653-4891

Blue Ridge White Path #21009580

Ashestos PI M Bulk

^	301	-3	w	J I		"	טע	III	
	EP.	A 6	00/	/R-9	3. M	4/8	82-	020	

#	Sample	Material Description	Non-Asbestos Fibers	Asbestos Fibers
54	54 - Membrane Caulk	Caulk / Cream		None Detected
55	55 - Remnant Flash	Bulk Material / Black 8% Cellulose Fibers		None Detected
56	56 - HVAC Caulk	Caulk / White		None Detected
57	57 - Vent Caulk	Caulk / Cream		None Detected
58	58 - Remnant Flash	Bulk Material / Black/White	4% Cellulose Fibers	2% Chrysotile
59	59 - Remnant Roof	Bulk Material / Black		3% Chrysotile
60	60 - Parapet	Bulk Material / White/Green	None Detected	
61	61 - Flashing	Bulk Material / Black/Gray	3% Chrysotile	
62	62 - Stucco Caulk	Bulk Material / White		None Detected
63	63 - Caulk - Structure	Caulk / Cream		None Detected
64	64 - Stucco	Stucco / Gray		None Detected
65	65 - Repair Caulk	Caulk / Cream		None Detected
66	66 - Remnant Flash	Bulk Material / Black/Cream		2% Chrysotile
67	67 - Remnant Flash	Bulk Material / Black/White		2% Chrysotile
68	68 - Window Caulk	Caulk / White		None Detected

Collected: Mar 17, 2021

Received: Mar 22, 2021

Reported: Mar 25, 2021

Project Analyst:
Meivis Sanchez,
Mairis Sánchez

Date: 03 - 25 - 2021 Reviewed By:

Renaldo Drakes,

Date:

Blue Ridge White Path #21009580

Asbestos PLM Bulk

EPA 600/R-93, M-4/82-020

#	Sample	Material Description	Non-Asbestos Fibers	Asbestos Fibers
69	69 - Door Caulk	Caulk / Gray	Caulk / Gray	
70	70 - Repair Caulk	Caulk / White		None Detected
71	71 - Texture	Texture / Gray		None Detected
72	72 - Texture	Texture / Gray		None Detected
73	73 - Texture	Texture / Gray		None Detected
74	74 - Shingle	Shingle / Black	8% Cellulose Fibers	None Detected
75	75 - HVAC Mastic	Bulk Material / Gray/Black 8% Cellulose Fibers		None Detected
76	76 - HVAC Dampet	Bulk Material / Black 8% Fiberglass		None Detected
77	77 - Stucco	Stucco / Gray	15% Fiberglass	None Detected
78	78 - HVAC Mastic	Bulk Material / Gray/White		None Detected
79	79 - Door Caulk	Caulk / Gray		None Detected
80	80 - Stucco	Stucco / Gray		None Detected
81	81 - Window Caulk	Caulk / Gray		None Detected
82	82 - Door Caulk	Caulk / Gray		None Detected
83	83 - Gap Caulk	Caulk / Gray		None Detected

Collected: Mar 17, 2021

Received: Mar 22, 2021

Reported: Mar 25, 2021

Project Analyst:
Meivis Sanchez, Mairis Sanchez

03 - 25 - 2021

Date:

Reviewed By: Renaldo Drakes,

Date:

Blue Ridge White Path #21009580

Asbestos PLM Bulk EPA 600/R-93, M-4/82-020

Sample **Material Description Non-Asbestos Fibers Asbestos Fibers** 84 - Stucco Stucco / Gray None Detected 85 - HVAC Caulk Caulk / Gray/Red None Detected Cementitious / Gray 86 - Concrete Coat None Detected Cementitious / Gray 87 - Concrete Coat **None Detected** 88 88 - Pen Repair Cementitious / Gray **None Detected** Lab Note: Layer of Paint Observed. Glazing / Gray 9580-89 - Window Glaze None Detected Lab Note: Sample #89, Not listed on COC.

HAYES
MICROBIAL CONSULTING

Collected: Mar 17, 2021

Received: Mar 22, 2021

Reported: Mar 25, 2021

Project Analyst:
Meivis Sanchez, Mairis Sanchez

03 - 25 - 2021

Date:

Reviewed By:

Renaldo Drakes,

03 - 25 - 2021

Date:

Blue Ridge White Path

#21009580

Asbestos Analysis Information

1955 Vaughn Road Suite	101
Kennesaw, GA 30144	
(770) 653-4891	

Analysis Details	All samples were received in acceptable condition unless otherwise noted on the report. This report must not be used by the client to claim product certification, approval, or endorsement by AIHA, NIST, NVLAP, NY ELAP, or any agency. The results relate only to the items tested. Hayes Microbial Consulting reserves the right to dispose of all samples after a period of 60 days in compliance with state and federal guidelines.
PLM Analysis	All Polarized Light Microscopy (PLM) results include an inherent uncertainty of measurement associated with estimating percentages by PLM. Materials with interfering matrix, low asbestos content, or small fiber size may require additional analysis via TEM Analysis.
TEM Analysis	Analysis by TEM is capable of providing positive identification of asbestos type(s) and semi-quantitation of asbestos content.
Definitions	'None Detected' - Below the detected reporting limit of 1% unless point counting is performed, then the detected reporting limit is .25%.
New York ELAP	Per NY ELAP198.6 (NOB), TEM is the only reliable method to declare an NOB material as Non-Asbestos Containing.
	Any NY ELAP samples that are subcontracted to another laboratory will display the name and ELAP Lab Identification number in the report page heading of those samples. The original report provided to Hayes Microbial Consulting is available upon request.

Kenneth Moore

EEA 600

400 Point, 1000 Point

Job Number:

Date Collected:

Analysis Type

Rulk

Point Count

Collector:

PLM

Contour Engineering

1955 Vaughn Road

Job Name:

Suite 101 Kennesaw, GA 30144

Analysis Methods

SHIP: FEDEX - PAK 50 DATE: 03-22-2021

8159 8141 4802

Same Day

Mobile: (770) 653-4891 Email: kmoore@contoureng.com

2 Day

Turnaround Times

1 Day

		_	_	_
NI	0	÷	0	

3 Hour

	Point	oodiit 40	00 Point, 1000 Point				3	Hour	Same Day	1 Day	2 Day	3 Day	5 Day
	Vermi	culite CA	ARB 435				3	Hour	Same Day	1 Day	2 Day	3 Day	5 Day
TEM	Air	EF	PA AHERA, NIOSH 7	402				-	Same Day	1 Day	2 Day	3 Day	5 Day
	Bulk	Ch	natfield					-	Same Day	1 Day	2 Day	3 Day	5 Day
	Wipe	AS	STM D6480-05					-	Same Day	1 Day	2 Day	3 Day	5 Day
	Micro	vac AS	STM D5755-09					-	Same Day	1 Day	2 Day	3 Day	5 Day
PCM	Air	NI	OSH 7400					-	Same Day	1 Day	2 Day	3 Day	5 Day
#	Group	Number			Samo	le Name			Analysis Type	,			
1		1	Λ-Δ	cto-la		17/	150		Allalysis Type	Turnaroun	d Vo	ume / Area	Stop (+)
2		2	100		7000	MA	50	,					
3		2	E	1	pet G	the W	orter/cyco	uf					
4		4			coet c) lue							
5			C	ove GI	lie			-					
6				210									
		6	W	3/5c	0			-					
7		7	Tex	ture-	Popcori	V							
7 8		8	Tex Tex	ture-	Porcon	N N							
7 8 9		89	Tex Tex FT	ture-	Popcon Popcon per Glu	al.							
7 8 9		8	Tex Tex FTI	ture- ture- V Con iture-	184 (211	al.							
7 8 9 10		8 9 10	Tex Tex FT Tex	ture- ture- V Con iture-	184 (211	al.							
7 8 9 10 11		8 9 10	Tex Tex FT Tex	ture- ture- V Con iture-	184 (211	al.							
7 8 9 10 11 12		89	Tex Tex FTI Tex FTI Cox	ture- ture- Y Com sture- M M M	Ropcon	al.							
7 8 9 10 11 11 12 13		8 9 10	Tex Tex FTI Tex FTI CON	ture- ture- y/ Con ture- m M e alue	Ropcon Only	Å.							
7 8 9 110 111 12 13 14 15 15 15 17 18 18 18 18 18 18 18 18 18 18 18 18 18		8 9 10 11 13	Tex Tex FTI Tex FTI CON	ture- ture- y/ Con ture- m M e alue	Ropcon Only	Å.							
7 8 9 10 11 11 12 13		8 9 10 11 13	Tex Tex FTI Tex FTI Cox Fox F10	ture- ture- Y Com sture- M M M	Ropcon Only	Ä							

SHIP: FEDEX - PAK SO DATE: 03-22-2021

8159 8141 4802

Sample Identification/Locatio

Sample #

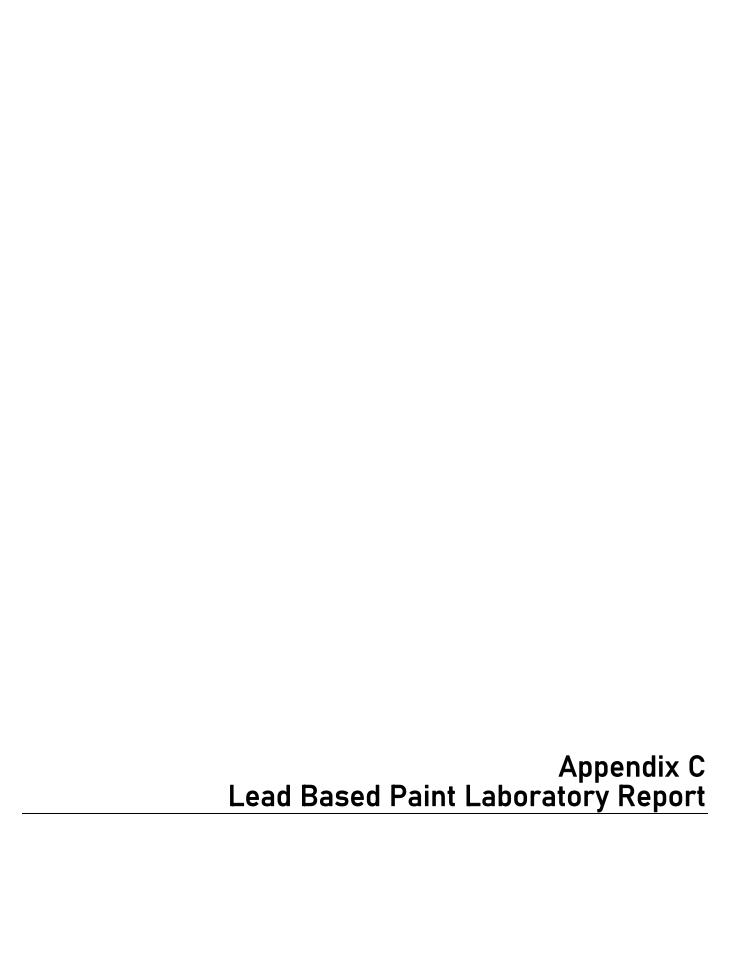
21009580

•	21009580
6)	
19	0
90	[
170	Caul K Fix graph
28	3
17	محمور
hs	Fin / corpet Glue
ÀS	Corolt C
9.g	
KY	Card Glue Only
8 V	
29	25/JM
36	Dar Carlk
3	
33	Prim Careet colles
33	ALL CO
h	Dacroe
15	Pen Caulk
36	F136,40
34	Q006 CO24
38	Window Part K
39	3) 70
ક	なが多
77	
3	Floor Coart
43	HV1C Damper
ממ	OlDa was Insulation
45	2. 1884:C
1,6	Remant Parceport
در 2	787
48	W. Odok F 194
65	Lange destal Carolic
S	-Ν
7,	Rollod Post
33	2007 Scalont
523	Brick Carl k
56	9
55	Remnon-Flagh
56	HVAC Can K
ارا کر	Vert Carl 16
58	4
40	ARMAN GOOF

Relinguished By

Date 8

Relimanished By


Sample # Sample Identification/Location 6	ation/Location Africation First Fi			_ +	21009580
# 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
\$ 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
3 4 3 4 3 4 4 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6					
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	{				
1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1015 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1017 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
4 19 19 19 19 19 19 19 19 19 19 19 19 19					
100 100 100 100 100 100 100 100 100 100					
4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
7875 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1				
457 957 959 95	1				
32 1 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3					
12970970 12970970 12970970	1				<u> </u>
1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	10 J		_		
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 2			_	
	, K				
A Car					
A C C C C C C C C C C C C C C C C C C C				<u> </u>	
20 00 10 10 10 10 10 10 10 10 10 10 10 10	Control				
20 27	¥.				
20 25	1.6			<u> </u>	
Sette C				-	
sete.	7				
246 C	+30				
	140	:		<u> </u>	
DON DEDE	٠	i			
1 6 2				-	
				-	
		:			

elinqwished By

Time

Relinguished By

Time

Analysis Report prepared for

Contour Engineering

1955 Vaughn Road Suite 101 Kennesaw, GA 30144

Phone: (770) 653-4891

Blue Ridge White Path Building

Collected: March 17, 2021 Received: March 22, 2021 Reported: March 25, 2021 We would like to thank you for trusting Hayes Microbial for your analytical needs! We received 23 samples by FedEx in good condition for this project on March 22nd, 2021.

The results in this analysis pertain only to this job, collected on the stated date, and should not be used in the interpretation of any other job. This report may not be duplicated, except in full, without the written consent of Hayes Microbial Consulting, LLC..

This laboratory bears no responsibility for sample collection activities, analytical method limitations, or your use of the test results. Interpretation and use of test results are your responsibility. Any reference to health effects or interpretation of mold levels is strictly the opinion of Hayes Microbial. In no event, shall Hayes Microbial or any of its employees be liable for lost profits or any special, incidental or consequential damages arising out of the use of these test results.

Steve Hayes, BSMT(ASCP) Laboratory Director

Hayes Microbial Consulting, LLC.

EPA Laboratory ID: VA01419

John N. Hayes

Lab ID: #188863

DPH License: #PH-0198

Blue Ridge White Path Building #21009575

Lead Bulk EPA 7000B

#	Sample	Weight (mg)	Total Lead (ug)	Concentration (% by Weight)	Concentration (PPM)
1	1L-Tan on CMU	342	<10.0	<0.00293	<29.3
2	2L - Pink on CMU	345	238	0.0691	691
3	3L - Tan on Brick	326	<10.0	<0.00307	<30.7
4	4L - Silver Paint in Basement	349	204	0.0583	583
5	5L - Metal Door Paint	329	8210	2.49	24900
6	6L - Wood Door Paint	342	3210	0.938	9380
7	7L - Red on Brick	325	62.4	0.0192	192
8	8L - Yellow on CMU	343	<10.0	<0.00292	<29.2
9	9L - Yellow on Metal Beam	344	9720	2.82	28200
10	10L - Peach Wood Door	55.0	<10.0	<0.0182	<182
	Lab Note: Sample Weight Below Method Guidelines.				
11	11L - Gray on Floor & Walls	301	<10.0	<0.00333	<33.3
	Lab Note: Sample contains substrate which may affect the calculation of	of weight percent and m	ng/kg.		
12	12L - Yellow on Supports	347	6370	1.84	18400

Collected: Mar 17, 2021

Received: Mar 22, 2021

Reported: Mar 25, 2021

Project Analyst: Renaldo Drakes, Date: **03 - 25 - 2021**

Reviewed By:

Darien Williams,

Janen Williams

Date: **03 - 25 - 2021**

Kennesaw, GA 30144

(770) 653-4891

Blue Ridge White Path Building #21009575

Lead Bulk EPA 7000B

#	Sample	Weight (mg)	Total Lead (ug)	Concentration (% by Weight)	Concentration (PPM)
13	13L - Gray on Supports	341	24100	7.06	70600
14	14L - Silver on Drain Pipe	326	264	0.0810	810
15	15L - Peach on Wood Trim	219	18.4	0.0084	84.0
16	16L - Gray on Wood Door wigh Blue	342	42.2	0.0123	123
17	17L - Yellow on CMU/Brick	319	<10.0	<0.00314	<31.4
18	18L - Yellow on Wood Panel	165	<10.0	<0.00606	<60.6
	Lab Note: Sample Weight Below Method Guidelines.				
19	19L - Tan on CMU	336	<10.0	<0.00298	<29.8
20	20L - Gray Floor Paint	343	<10.0	<0.00292	<29.2
21	21L - Pink on Paneling	341	<10.0	<0.00294	<29.4
22	22L - Tan Trim in Offices	149	<10.0	<0.00672	<67.2
	Lab Note: Sample Weight Below Method Guidelines.				
23	23L - Tan on Panel Walls	304	<10.0	<0.00329	<32.9

Collected: Mar 17, 2021

Received: Mar 22, 2021

Reported: Mar 25, 2021

Project Analyst: Renaldo Drakes,

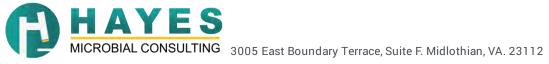
03 - 25 - 2021

Date:

Reviewed By:

Darien Williams,

Janen Williams


Date:

Kenneth Moore Contour Engineering

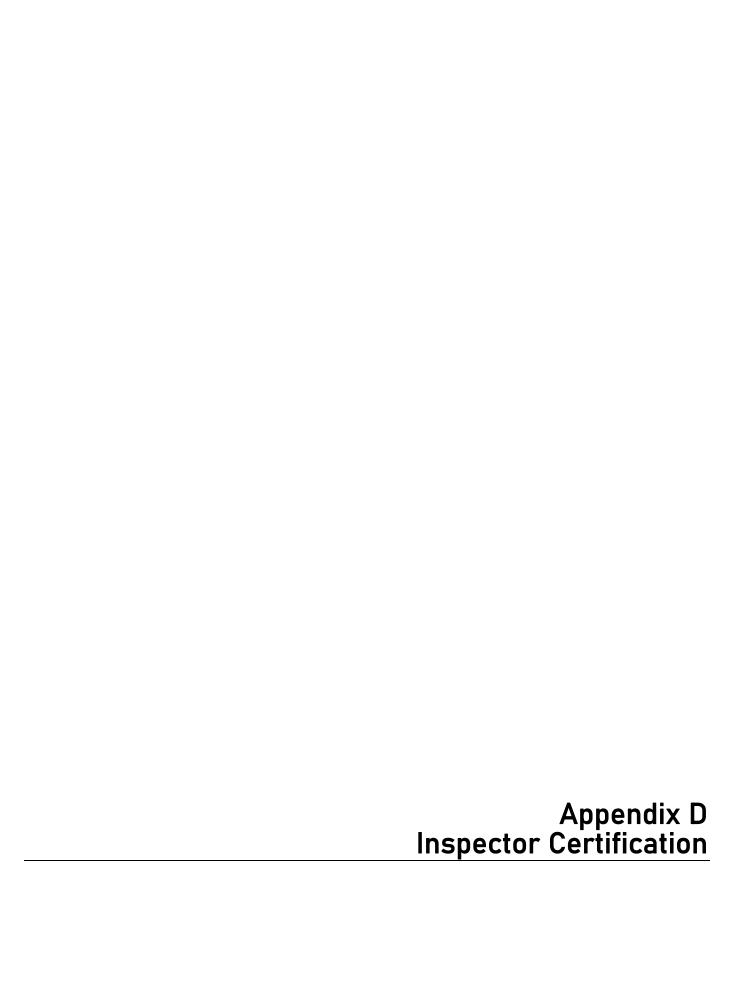
1955 Vaughn Road Suite 101 Kennesaw, GA 30144 (770) 653-4891

Lead Analysis Information

Lead in Air Analysis	The OSHA Action Level for L with a "less than" (<) symbol				reighted Average is 50ug/m ³ . Sample Results denoted
Dust Wipe Lead Analysis	The regulatory guidelines fo	r lead dust by wipe samp	ling are as follows:		
	Location	EPA Clearance Level	EPA Hazard Level	New York City DOHMH Standard	
	Floors (FL)	<40.0μg/ft²	10.0μg/ft²	10.0μg/ft²	
	Interior Window Sills (SL)	<250.0μg/ft²	100.0μg/ft²	50.0µg/ft²	
	Window Wells (WW)	<400.0μg/ft²		100.0μg/ft²	
	The Reporting Limit is 10.00 determined by the client.)µg Total Pb. Reported re	sults are not corrected	l for field blanks. Dust wipe area and	I results are calculated based on area measurements
Paint Chip Lead Analysis	The HUD lead guidelines for	lead paint chips are 0.50	0% by weight, 5000 ppn	n, or 1.0mg/cm ² . The Reporting Limit	is 10μg Total Pb.
Water Lead Analysis	Minimum Reporting Limit: 0.	.2mg/L lead concentratio	n. EPA Regulatory Limi	t: 5.0mg/L.	
Soil Lead Analysis	The Federal lead guidelines Total Pb.	for lead in soil is 400μg/	g (ppm) in play areas,	and 1200 μg/g (ppm) in bare soil in t	he remainder of the yard. The Reporting Limit is 10.0

	NO
company: Contour Engineers	-

SHIP: FEDEX - PAK 50 DATE: 03-22-2021


METALS

8159 8141 4802

Job Number:		Blue Ridg	0 -	63.11			- 2		
Collector: Re		0	1 - 1 :	Mobile			Email:		
Date Collected:	3/17/0		the Building	Note:				\sim	
Analy	sis Type	A	nalysis Methods				Turnaround Tim	-//	XX
Lead	Air	NIOSH 7082		S	ame Day	1 Day	2 Day	3 Day	(5)(a)
	Wipe	EPA 7000B Wipe		S	ame Day	1 Day	2 Day	3 Day	5 Day
	Pariot	EPA 7000B Paint Chip	,	S	ame Day	1 Day	2 Day	3 Day	5 Day
TCLP	Bulk	TCLP Analysis				1 Day	2 Day	3 Day	5 Day
# N	umber		Name		A	nalysis Type	Volume/	Area	Turnaround
1 //		Tay on CMU							
2 22		Pink on CMU							
3 3/		Ton on Brick							
4 42			t in Basement						
5 51		Metal Door Dai							
6 66		Wood Door on	7						
7 37		101					177		
8 86		Yelbur on CM	•						
9 9/		Vellow on Me	tal Beam						
10 104		(Carolina)	SORC						
11 114		^ '	ort walls						
12 /3/		Yellow on Supa							
13 13/		City on Supp							
14 141		Silver on Dear	- :00			-			
15 15/		Peach on wood	+2.20		- 1				
16 161	•	Circy on wood door	with Blue						
17 13/		Yellow on CMU/I	wick.						
18 191			Ponel						
19 19/		Tan on CMU	701101						
20 20/		Corey Floor Pain	4						
21 21/	1	Pink on Poneling							
					111			Doto: 1	11 11
Released by:	1	Date:	Received By:	1	11			Date 17	1221

Start-Stop Time																	,				Time
Flow Rate			1																		Date 3
Sample Date																		4			Relinquished By
Volume or Area											ر/ځ <u>و</u> _			ļ							Time
Sample Identification/Location	LC/M D	Ton of Ponel Walls						I LINE	SHIP: FEDEX - PAK SO DATE: 03-22-2021												Date,
Sample #	780	, de																			Pelinquished By

ठ

900 N.W. 5TH Avenue, Fort Lauderdale, Florida 33311 (1/954) 524-7208

This is to Certify that

Kenneth L Moore

7265 Wingfield Way, Cumming, GA 30041

Processed By:

www.seagulltraining.com 1-800-966-9933

has successfully completed an English

Asbestos Building Inspection Refresher

13-Apr-20

13-Apr-20

and has completed the requisite training for TSCA

Meets state requirements of FL49-0001020/CN-0006273 and UT (6.0 core).

NDAAC Provider #451

Trainer(s): James F. Stump

Training Address: 5891 New Peachtree Rd. Ste. 122 Doraville, GA. 303

Successful course completion based on exam score on: 13-Apr-20

ames F. Stump, Course Sponsor

Certificate Number:

AT THIS TRAINING COM TENTS OF TITLE IV OF FR PART 745 OR

Course Number: GE2016

This Certificate Expires:

13-Apr-21